Aks and PDT: Where Are We Now? Todd Schlesinger, MD, FAAD

@toddschlesingermd

Director • Dermatology and Laser Center of Charleston • Clinical Research Center of the Carolinas Affiliate Assistant Professor, Medical University of South Carolina College of Medicine Affiliate Assistant Professor, Medical University of South Carolina College of Health Professions Clinical Instructor, Edward Via College of Osteopathic Medicine

Relevant Disclosures

Consulting honoraria from Abbvie, Allergan, Almirall, Arcutis, Biofrontera, BMS, Castle Bioscience, CMS Aesthetics DCME, EPI Health, Foundation for Research and Education in Dermatology, Galderma, Genentech, Kintor, Lilly, Merz, Nextphase, Novartis, Ortho Dermatologics, Pharmatecture, Pierre Fabre, Plasmed, Prolacta Bioscience, Pulse Biosciences, Regeneron, Skinceuticals/L'Oreal, Sun Pharma, UCB, and Verrica. Grant/Research funding from Abbvie, Aclaris, Allergan, Amgen, Anterios, AO Biome, Arcutis Premier Research, ASLAN, Astellas Pharma US, Athenex, Biofrontera, Biorasi, Boehringer Ingelheim, Brickell Biotech, BMS, Cara Therapeutics, Castle Bioscience, Celgene, Chemocentryx, Coherus Bioscience, Concert Pharmaceutical, Corrona, Cutanea Life Sciences, Dermavant, Dermira, DT Pharmacy & DT Collagen, EPI Health, Galderma, Janssen, Kiniksa, Leo, Lilly, Merz, Nestle, Nimbus, Novartis, Pfizer, Processa, Pulse Biosciences, Regeneron, Sanofi Genzyme, Sisaf, Trevi, UCB and Verrica. Speakers' Bureau/Advisory Board honoraria from Abbvie, Almirall, Amgen, Arcutis, Bioderma, BMS Biofrontera, Celgene, DUSA/Sun Pharma, EPI Health, Leo, Lilly, Regeneron, Remedly, Sanofi Genzyme, and Sun Pharma. Owns stock from Amgen, BMS, Lilly, and Remedly

Clinical Challenges in AK PDT

- Pain
- Consistency
- Adverse Effects
- Patient Acceptance
- Seasonality
- Light Source and Sensitizer
- Prevention of Progression
- Recurrence

FDA APPROVED ALA PREPARATIONS AND VEHICLES

20% ALA Solution in Alcohol

Requires mixing ethanol and ALA powder, must be used within 2 hours Indicated for face or scalp, or upper extremities

10% ALA Nanoemulsion Gel

No mixing required, stable at room temperature for 24 months Indicated for face and scalp

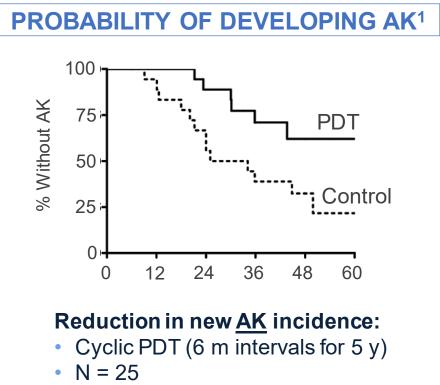
FIELD THERAPY FOR AK: A STRUCTURED REVIEW OF LITERATURE ON EFFICACY, COST, & ADHERENCE

Number of treated AK per 1000 Medicare patients rose 14.6% from 2007 to 2015. In 2013, the estimated cost of treating AK in the US was \$1.68 billion.

PubMed, Embase, Web of Science and Google Scholar database searches from Oct 2020 to Mar 2021 for articles on AK field therapy.

Effective cost was calculated as total cost divided by Clearance Rate (CR), to approximate the cost of achieving 100% CR in a single patient.

5-FU has a wide range of total cost from \$433 for 4% cream to \$1503 for 0.5% cream. **Total cost of PDT is \$540 for a single round using ALA 10% gel**. Field treatment with 5-FU and PDT have similar effective costs.


Effect of adherence on real-world efficacy and long-term clearance favors shorter term topical regimens or in-office PDT procedures

Product	Regimen		Cos	st (\$)	
		Regimen	СРТ	Total	Effective
5-FU (4% cream) ³	Daily x 4 wk	262.50	169.93	432.93	541.16- 801.72
ALA (10% gel) ²	1-2 session, 3 months apart	299.00	240.76	539.76	593.14- 870.58
5-FU (5% cream) ³	Twice daily x 4 wk	384.94*	169.93	554.93	737.90 – 956.77
Imiquimod (5% cream) ⁴	2x/wk x 16 wk	529.80	169.93	699.93	1093.64 -2916.38
Tirbanibulin (1% ointment) ⁵	Daily x 5 days	990.00	169.93	1502.93	2148.02 -2636.20
5-FU (0.5% cream) ⁶	Daily x 4 wk	1332.08	169.93	1502.91	2589.67 -4693.78
Diclofenac sodium (3% gel) ⁷	Twice daily x 12 wk	943.57	169.93	1113.50	2715.85 -5860.52
Imiquimod (3.75% cream) ⁸	Daily x two 2-wk cycles 2 wk off	1040.93	169.93	1210.86	3363.50

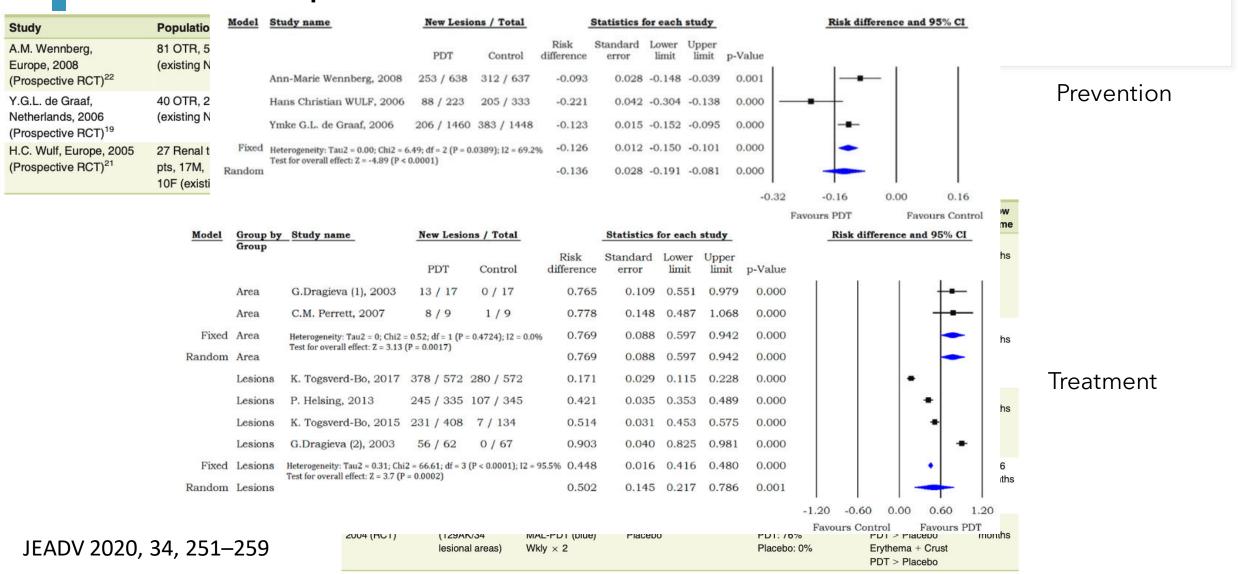
Lampley N 3rd, Rigo R, Schlesinger T, Rossi AM. Dermatol Surg. 2023 Feb 1;49(2):124-129.

CLINICAL EVIDENCE: PDT AS EFFECTIVE FIELD TREATMENT

Chemoprevention effect in organ transplant recipients

• 16% MAL, 3h incubation, red light

REDUCTION IN SCC INCIDENCE²


Assessment	SCC Lesion Count Median	Reductio n from Baseline
1 yr before PDT	20	
1 yr after PDT	4	79%
2 yrs after PDT	1	95%

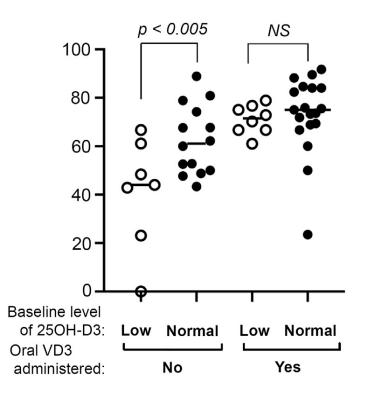
Reduction in <u>SCC</u> incidence vs. baseline:

- Cyclic PDT (4-8 w intervals for 2 y)
- N = 12
- 20% ALA, 1h occluded incubation, blue light

1- Togsverd-Bo K, Omland SH, Wulf HC, et al. *Am J of Transplant.* 2015;15:2986-9. 2- Adapted from: Willey A, Mehta S, Lee PK. *Dermatologic Surgery.* 2010;36:652-8.

Chemoprevention in sOTR

IMPROVED PDT EFFICACY WITH VIT D PRE-TREATMENT

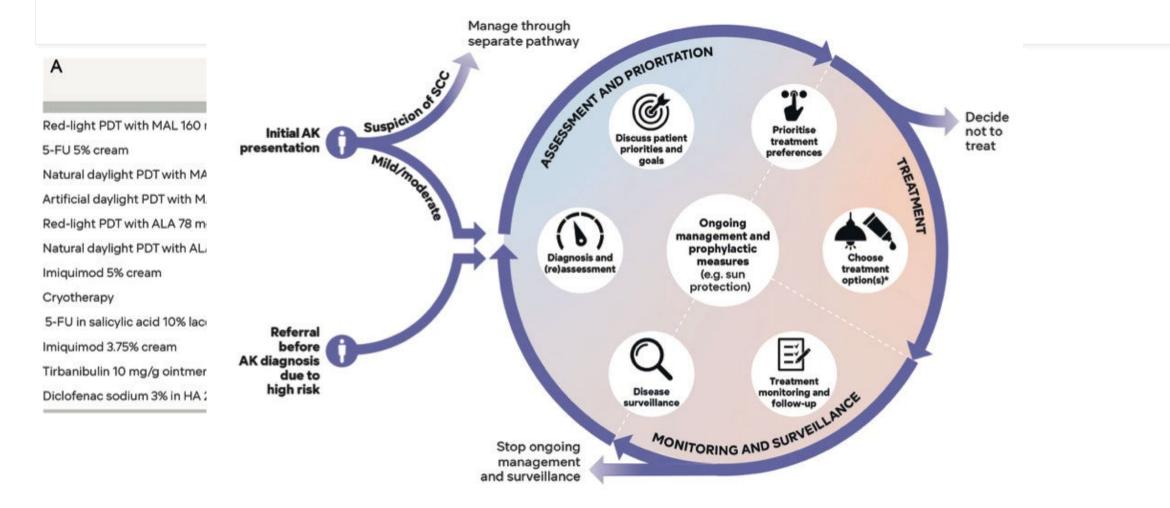

Significant improvement of facial actinic keratoses after blue light photodynamic therapy with oral vitamin D pretreatment: An interventional cohort-controlled trial

Taylor A. Bullock, MD,^a Jeffrey Negrey, BA, MA,^b Bo Hu, PhD,^c Christine B. Warren, MD, MS,^{a,d} Tayyaba Hasan, PhD,^e and Edward V. Maytin, MD, PhD^{a,b,d,e} *Cleveland, Obio and Boston, Massachusetts*

- n=58, oral Vit. D for 5-14 days prior to PDT session
- **PDT Protocol:** 15 minutes incubation, 30 min illumination with blue light (20 J/cm²)
- Endpoints: AK lesion clearance (%) at 3 and 6 months
- Results: High-dose Vit. D₃ supplementation significantly improved overall AK lesion response (72.5% ± 13.6%) compared to without (54.4% ± 22.8%)

AK Lesion Clearance (%)

Bullock TA, Negrey J, Hu B, Warren CB, Hasan T, Maytin EV. J Am Acad Dermatol. 2022 Jul;87(1):80-86.


Table 2

Overview of the mechanisms of action of the included pretreatment compounds and their effects in combination with PDT.

Compound	Mechanism of action	Effect on PDT procedure?	Proposed effect in combination with PDT		Mechanisms of action
Penetration enhancers	Enhances skin penetration	Yes	 Increases uptake of PS Increases accumulation of PpIX Greater effect of PDT 	Work?	ALA/MAL
Vitamin D	 Induces differentiation Reduces proliferation 	Yes	 Upregulates CPOX expression Downregulates FECH expression Increases accumulation of PpIX Stimulates TNF-α mediated apoptosis Greater effect of PDT 	~	Target cell
Diclofenac	 Inhibits COX-2 activity Reduces pro- inflammatory cytokines Inhibits angiogenesis 	No	 Greater effect of PD1 Inhibits COX-2- mediated survival Stimulates TNF-α mediated apoptosis Overall clearance boosted by PDT and diclofenac Reduces associated inflammation 	1) Uptake of photosensitisor	Cellular J COX-2 destruction T HH Dic HHH Retinoids
Retinoids	 Induces differentiation Reduces proliferation 	No	 Upregulates p53 expression Induces caspase proteins Overall clearance boosted by PDT and retinoids 	2 Transport and	5-FU Vit D Protoporphyrinogen IX
5-fluorouracil	 Interferes with thymidylate synthase Impair DNA replication Induces apoptosis 	Yes	Upregulates CPOX expression Downregulates FECH expression Increases accumulation of PpIX Greater effect of PDT Impairs DNA replication Overall clearance boosted by PDT and 5- FU	conversion Pro Photoactivation P	Mitochondrial dysfunction

Photodiagnosis and Photodynamic Therapy 43 (2023) 103703

Personalizing Actinic Keratosis Management

Acta Derm Venereol 2023; 103: adv6229

"Painless PDT" Does it Work?

All Sites	Erythema Score			
Number of AK	Low	Moderate	High	-
0	75 (60.0%)	38 (30.4%)	12 (9.6%)	
1-4	88 (33.6%)	123 (46.9%)	51 (19.5%)	n < 0.0001
5-10	12 (22.6%)	19 (35.9%)	22 (41.5%)	p < 0.0001
>10	3 (23.1%)	4 (30.8%)	6 (46.2%)	

Forehead	Erythema Score			
Number of AK	Low	Moderate	High	
0	8 (66.7%)	3 (25.0%)	1 (8.3%)	
1-4	26 (43.3%)	26 (43.3%)	8 (13.3%)	0.15
5-10	4 (25.0%)	8 (50.0%)	4 (25.0%)	p = 0.15
>10	2 (20.0%)	4 (40.0%)	4 (40.0%)	

Temples		Erythema Score	
Number of AK	Low	Moderate	High
0	15 (83.3%)	3 (16.7%)	0 (0.0%)
1-4	25 (41.0%)	27 (44.3%)	9 (14.8%)
5-10	3 (21.4%)	6 (42.9%)	5 (35.7%)
>10	1 (50.0%)	0 (0.0%)	1 (50.0%)

p = 0.002

Cheeks		Erythema Score		
Number of AK	Low Moderate		High	
0	1 (6.7%)	11 (73.3%)	3 (20.0%)	
1-4	9 (16.1%)	29 (51.8%)	18 (32.1%)	
5-10	5 (23.8%)	5 (23.8%)	11 (52.4%)	
>10	0 (0.0%)	0 (0.0%)	1 (100.0%)	

p = 0.06

Nose		Erythema Score	
Number of AK	Low	Moderate	High
0	12 (32.4%)	17 (45.9%)	8 (21.6%)
1-4	9 (16.4%)	31 (56.4%)	15 (27.3%)
5-10	0 (0.0%)	0 (0.0%)	2 (100.0%)

p = 0.09

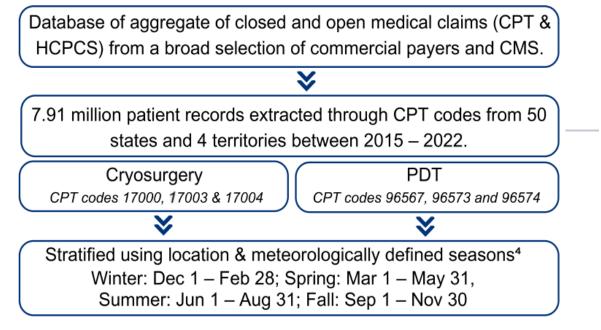
Supralabial				
Number of AK	Low	Moderate	High	-
0	39 (90.7%)	4 (9.3%)	0 (0.0%)	p = 0.009
1-4	19 (63.3%)	10 (33.3%)	1 (3.3%)	

Photodiagnosis and Photodynamic Therapy 45 (2024) 103838

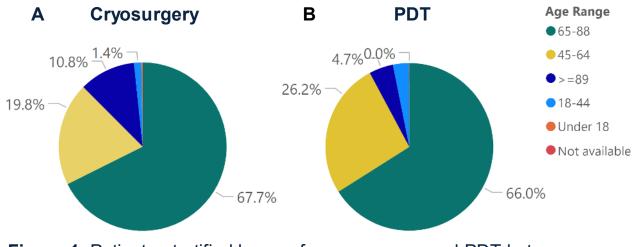
What About Indoor Daylight PDT?

Timepoint	Site	Red-lamp treatment	Indoor-daylight treatment
Pre-treatment lesions (mean \pm SD)	Face	6 ± 2	7 ± 3
	Forehead	6 ± 3	6 ± 4
	Scalp	10 ± 7	13 ± 5
1-month post-treatment clearance rate (mean \pm SD)	Face	$60 \pm 15\%$	$65\pm22\%$
	Forehead	$59\pm23\%$	$70\pm20\%$
	Scalp	$49 \pm 33\%$	$46\pm\mathbf{32\%}$
6-month post-treatment clearance rate (mean \pm SD)	Face	$69\pm35\%$	$72 \pm 16\%$
	Forehead	$65 \pm 28\%$	$73 \pm 31\%$
	Scalp	$60\pm39\%$	$59\pm26\%$
euu eau suu sau osu ruu rau Wavelength (nm)	400 450	500 550 600 650 700 750 •00 •00 •00 •00 •00	Wavelength (nm)

Skin Health Dis. 2023;3:e226. Photodiagnosis and Photodynamic Therapy 41 (2023) 103260 30 min ALA + 10 min red light vs. direct sun thru window for 2 hours


SEASONAL & GEOGRAPHICAL TRENDS IN PDT & CRYOSURGERY UTILIZATION IN THE US: A CROSS-SECTIONAL STUDY (2015-2022)

RESULTS:


PDT procedural claims are:

- Affected by season, significantly increasing in the cooler months (Sep-Feb) and decreasing in warmer months (Mar-Aug) (*P*=0.0000159)
- Correlated by geographic location

States with larger seasonal changes have a larger change in PDT claims between cooler and warmer months.

Majority of patients were between ages 65-88 for both PDT and cryo

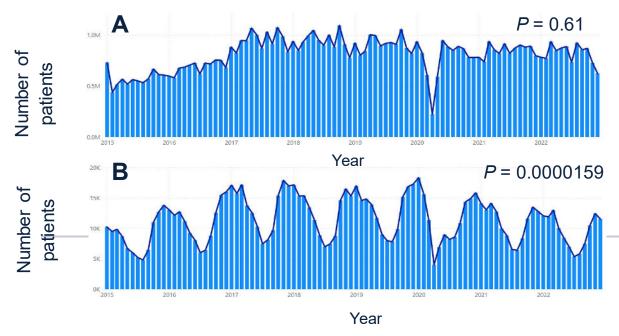
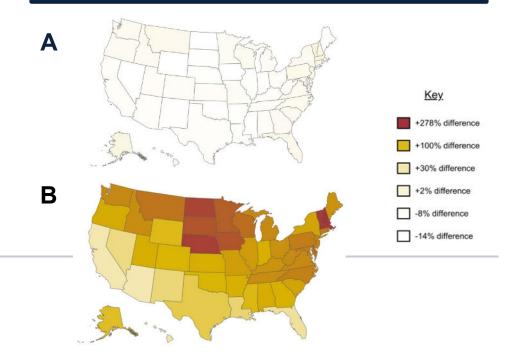


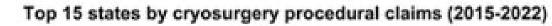
Figure 1. Patients stratified by age for cryosurgery and PDT between 2015-2022.

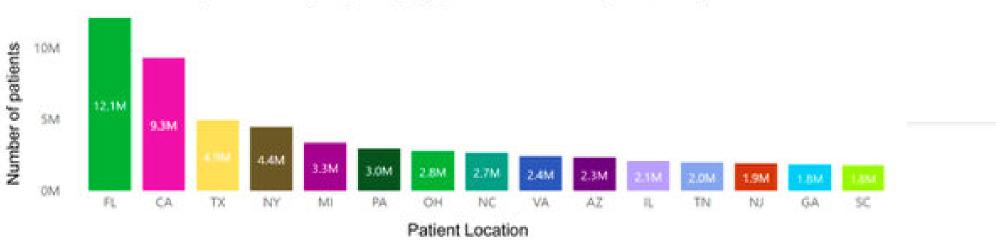
Merritt, D., Lyons, J., Mikati, M., & Schlesinger, T. (2023). Seasonal and Geographical Trends in Photodynamic Therapy and Cryosurgery Utilization in the United States: A Cross=Sectional Study from 2015-2022. SKIN The Journal of Cutaneous Medicine, 7(6), s288. https://doi.org/10.25251/skin.7.supp.288


SEASONAL & GEOGRAPHICAL TRENDS IN PDT & CRYOSURGERY UTILIZATION IN THE US: A CROSS-SECTIONAL STUDY (2015-2022)

PDT procedural claims show seasonality, peaking during cooler months and decreasing during the warmer months, while cryosurgery procedural claims remain relatively stable year-round

Figure 2. Number of (a) cryosurgery procedural claims and (b) PDT procedural claims in the US by month between 2015-2022. *P*-values were calculated through sinusoidal regression and data from 2020 was excluded from the analysis due to the COVID-19 pandemic.


Difference between PDT procedural claims in the winter (Dec-Feb) and summer months (Jun-Aug) varies by geographic location


Figure 3. Percentage difference in (a) cryosurgery procedural claims and (b) PDT procedural claims in the winter months vs. summer months stratified by geographic location.

Merritt, D., Lyons, J., Mikati, M., & Schlesinger, T. (2023). Seasonal and Geographical Trends in Photodynamic Therapy and Cryosurgery Utilization in the United States: A Cross=Sectional Study from 2015-2022. SKIN The Journal of Cutaneous Medicine, 7(6), s288. https://doi.org/10.25251/skin.7.supp.288

Top 15 states according to cryosurgery and PDT procedural claims

A

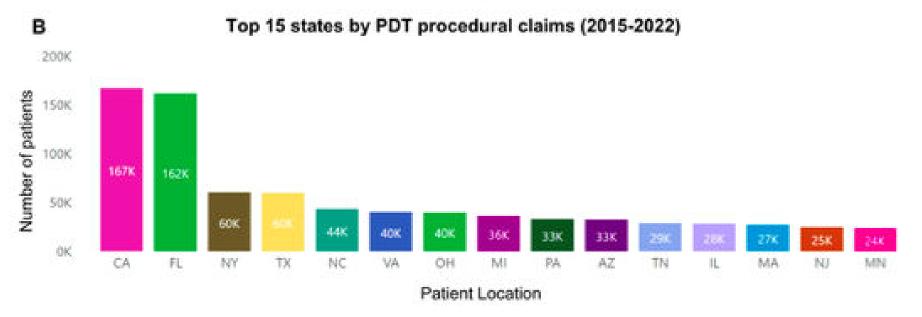


Figure 2. Top 15 states by (a) cryosurgery and (b) PDT procedural claims between 2015-2022.

Merritt, D., Lyons, J., Mikati, M., & Schlesinger, T. (2023). Seasonal and Geographical Trends in Photodynamic Therapy and Cryosurgery Utilization in the United States: A Cross=Sectional Study from 2015-2022. SKIN The Journal of Cutaneous Medicine, 7(6), s288. https://doi.org/10.25251/skin.7.supp.288

What Am I Doing In Clinic?

- Usually starting with cryosurgery
- Using tirbanibulin for small field pattern AK
- Then doing PDT for larger field AK, face, scalp, extremities, at least 2 treatments and cycling depending on disease burden
- Adding in 5-FU 5%/calcipotriene or 4% 5-FU for larger field mixed sometimes with imiquimod

Aks and PDT: Where Are We Now? Todd Schlesinger, MD, FAAD

@toddschlesingermd

Director • Dermatology and Laser Center of Charleston • Clinical Research Center of the Carolinas Affiliate Assistant Professor, Medical University of South Carolina College of Medicine Affiliate Assistant Professor, Medical University of South Carolina College of Health Professions Clinical Instructor, Edward Via College of Osteopathic Medicine