Superficial Radiation Therapy (SRT) for NMSK

David J. Goldberg, MD, JD Skin Laser and Surgery Specialists Schweiger Dermatology Group Icahn School of Medicine at Mt. Sinai

Disclosure

- Consultant for Sensus
- I ran an ACGME Micrographic Surgery and Cutaneous Oncology Fellowship
- I am member of SRT Consensus Group

Multiple Approaches

- Mohs Micrographic Surgery (Mohs) and other surgical approaches
- Other Destructive Methods
- PD-1 /Hedgehog Inhibitors
- Superficial Radiation Therapy (SRT)

Superficial Radiation Therapy (SRT)

λ Wavelength (meters)

Electromagnetic Spectrum

 Utilizes low energy photon X-rays operating at variable peak voltages of 50, 70, and 100 kVp.

Planned calibrated dose delivery is accurate with internal filtration technology.

• Unit automatically stops when cumulative amount of radiation is delivered.

• Easy to administer

• Effectively targets and treats lesions

• Delivers gentle indirect radiation which does not penetrate and impact the underlying healthy tissue.

SRT

 FDA approved for total body treatment of non melanoma skin cancer (NMSC)

Evidence Based Therapy

 The cure rate for 1715 primary nonaggressive NMSC treated with the SRT-100[™] was 98% (Cognetta et al, JAAD 2012). Tumor and Patient Selection: Treatment Objectives

• To eradicate the tumor while maintaining or improving the patient's quality of life.

NMSC

Most commonly treated with SRT

Basal Cell Carcinoma

• Squamous Cell Carcinoma

Tumor Site

• SRT may be used to treat tumors on all skin surface areas

SRT may give a better cosmetic outcome:

• Scalp

• Eyelid

• External ear canal and helix

• Nasal ala

Confusion

• The differences between superficial radiation therapy, electron beam, brachytherapy and electronic brachytherapy

- SRT more energy and deeper penetrating than Grenz ray
- Brachytherapy uses radioactive sources within or directly adjacent to tumor
- Electron beam therapy uses a medical linear accelerator

Consensus

- EBT also requires higher energy to encompass many superficial skin cancers than does SRT
- SRT has higher cure rates and better cosmesis than both brachiotherapy and electron beam therapy
- SRT more cost-effective in terms of both equipment and patient cost

Large Tumors

- SRT may present a simpler option than extensive surgery and reconstruction(skin grafting)
- Minimally higher risk of recurrence than surgery
- What about other benefits?

- SRT clearly more beneficial for many NMSC on lower extremities
- SRT has particularly favorable cosmetic benefit on alar rim of nose and periorbital area.

Important factors to consider

• Treatment margin

• 8-10mm margins are common for BCC

• 10mm is used for SCC.

• Recommendations based on estimates of surgical margins

Consensus

- Beam and delivered dose of SRT has only 1 mm lateral edge drop-off (penumbra) of the treatment site
- Radiation field should be small (umbra)
- So initial measurement of tumor size should be size of lesion plus 2-5 mm margin around the lesion
- Almost all lesions will have size of >2cm.

Ideal Patients for SRT

• Poor surgical candidates

Consensus

- SRT does not require that patients stop anticoagulants
- SRT can be used safely in patients with poor circulation
- SRT best for those who cannot do wound care
- SRT best for those with significant fear of surgery and scarring

Contraindications for SRT

Pacemaker or defibrillator within the treatment area

• Previous radiation therapy to the area of concern

NMSC: BCC

BCC R Forehead

BCC Forehead 4 months post SRT

BCC R Chest

BCC R Chest

BCC R Chest

BCC R Chest Post SRT:4 weeks

BCC L Temple

BCC L Infranasal Area

BCC L Infranasal Area

BCC Nose

BCC Scalp

SCC R Helix

SCC R Ear

SCC L Lower Leg

SCC L Leg

Complications

- Temporary erythema almost all patients for 7-10 days
- Erythema usually related to dose of radiation
- Hyperpigmentation most common in Fitz V-VI patients
- Radiation dermatitis occasionally seen. Treatment with silicone gels

Consensus

- There is insufficient evidence to support or refute specific topical therapies for prevention or management of radiation-induced skin changes
- There is no evidence that use of anti-inflammatory agents have any impact on cure rates
- Management of radiation dermatitis based on severity of damaged skin
- SRT induced radiation dermatitis mild

Radiation dematitis

2 days of silicone gel treatment

Reference

 Cognetta AB, Wolfe CM, Goldberg DJ, and Hong HG. Practice and Educational Gaps in Radiation Therapy in Dermatology. Dermatol Clin. 34: 319-333, 2016

Consensus Guidelines

- Nestor MS, Berman BB, Goldberg D, Cognetta AB, Gold M, Roth W, Cockerell CJ, Glick B
- J Clin Aesthet Dermatol. 12: 2019

Superficial Radiation Therapy (SRT) for NMSK