
Non-Invasive Detection for Melanoma

REVOLUTIONIZING DERMATOLOGY EDUCATION

Laura K. Ferris, MD, PhD

Professor of Dermatology
University of Pittsburgh

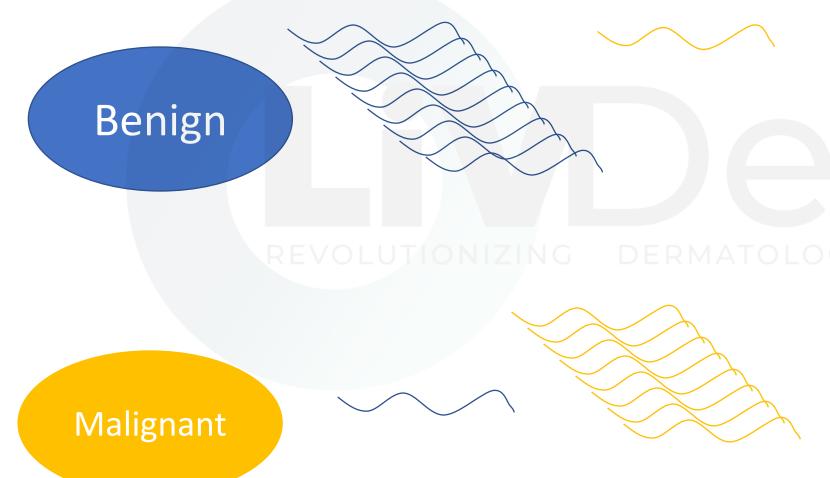
Making biopsy decisions for pigmented lesions

Nonmelanoma

Melanoma

How good are we?

- Reader studies:
 - Sensitivity 65-82%
- NNB: 2.2 30.5 (mean 13.2 for US Dermatology practitioners)

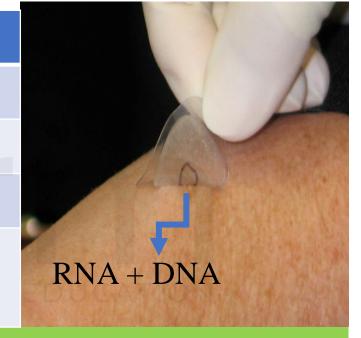

Approaches

Genetic analysis

Physical properties

- Visual
- Conduction

Gene expression profiling (GEP)


Applications in melanoma: Non-invasive test to help:

- 1. Distinguish melanoma from nevi
- 2. Classify histologically equivocal biopsied melanocytic lesions
- 3. Predict which tumors are at highest risk of metastasis

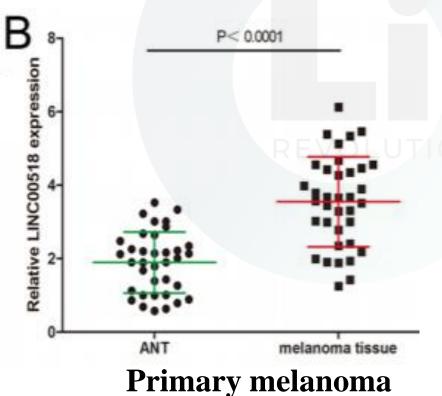
PLA for non-invasive diagnosis of melanoma

J Am Acad Dermatol 2017;76:114-20. JAMA Dermatol. 2017 Jul 1;153(7):675-680

Genetic finding	% histologic melanoma
LINC (RNA) +	7%
PRAME (RNA) +	50%
LINC and PRAME (RNA) +	93%
TERT promoter mutation (DNA)	79%
present	NG DERMATOLOGY

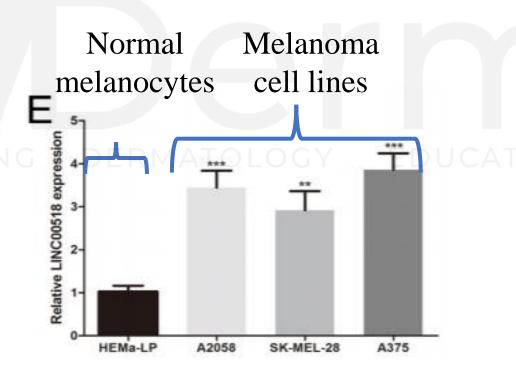
SENSITIVITY:

> 97% of melanomas express LINC, PRAME, and/or TERT


SPECIFICITY:

> 48% of non-melanomas are negative for LINC, PRAME AND TERT

ARTICLE Open Access


Long noncoding RNA LINC00518 acts as a competing endogenous RNA to promote the metastasis of malignant melanoma via miR-204-5p/AP1S2 axis

Wenkang Luan¹, Yuting Ding², Shaojun Ma¹, Hongru Ruan¹, Jinlong Wang¹ and Feng Lu¹

LINC00518

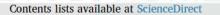
- promotes melanoma invasion and metastasis
- ➤ Higher expression associated with lower melanoma survival

MDPI

LINCO0518 in multiple cancers

Article 2020 Dec 21;12(12):3867

LncRNA LINC00518 Acts as an Oncogene in Uveal Melanoma by Regulating an RNA-Based Network


Cristina Barbagallo ¹, Rosario Caltabiano ², Giuseppe Broggi ², Andrea Russo ³, Lidia Puzzo ², Teresio Avitabile ³, Antonio Longo ³, Michele Reibaldi ³, Davide Barbagallo ¹, Cinzia Di Pietro ¹, Michele Purrello ¹ and Marco Ragusa ^{1,*}

ORIGINAL RESEARCH published: 15 April 202 doi: 10.3389/fonc.2021.64655

BBA - Molecular Basis of Disease 1865 (2019) 708–723

BBA - Molecular Basis of Disease

journal homepage: www.elsevier.com/locate/bbadis

Down-regulated expression of LINC00518 prevents epithelial cell growth and metastasis in breast cancer through the inhibition of CDX2 methylation and the Wnt signaling pathway

Hong-Bin Wang^{a,1}, Hong Wei^{b,1}, Jin-Song Wang^a, Lin Li^a, An-Yue Chen^a, Zhi-Gao Li^{a,*}

LINC00518 Promotes Cell Proliferation by Regulating the Cell Cycle of Lung Adenocarcinoma Through miR-185-3p Targeting MECP2

Xu Han[†], Jixiang Wu[†], Yajun Zhang^{*}, Jianxiang Song, Zhan Shi and Huiwen Chang

PRAME (PReferentially expressed Antigen in MElanoma) in melanoma vs. nevi (IHC)

Melanom	а Туре	In Situ Only	Invasive	Total
Superficia	al spreading	12/12	37/41	49/53
Lentigo n	naligna	24/27	15/17	39/44
Acral		7/7	10/11	17/18
Nodular		NA	9/10	9/10
Other*		2/2	6/8	8/10
Subtotal †		45/48	77/87	122/135
Desmopla	astic [‡]	NA	7/20	7/20
Total		45/48	84/107	129/155

Type of Melanocytic Nevus	Diffuse (4+) IHC PRAME Expression	Focal (1 or 2+) IHC PRAME Expression
Common acquired nevus	0/40	4/40 (1+)
Dysplastic (Clark's) nevus	0/60	10/60 (1+)
		1/60 (2+)
Blue nevus	0/10	0/10
Spitz nevus	1/10	1/10 (1+)
Deep penetrating nevus	0/3	0/3
Traumatized/ recurrent nevus	0/15	1/15 (2+)
		1/15 (1+)
Congenital nevus	0/2	0/2
Nodal nevus	0/5	0/5
Total	1/145	18/145

83% PRAME + (90% of non-desmoplastic melanoma)

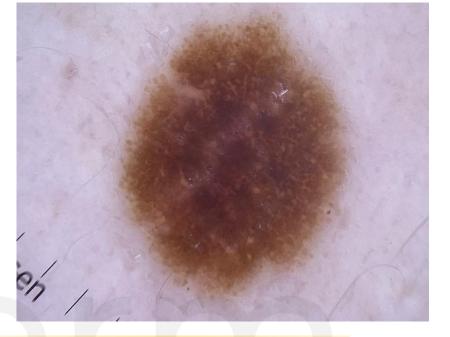
13% PRAME +

Am J Surg Pathol. 2018 November; 42(11): 1456–1465

Utility of TERT promoter mutations for cutaneous primary melanoma diagnosis

Nancy E. Thomas, MD, PhD*,†, Sharon N. Edmiston, BS*,†, Yihsuan S. Tsai, PhD†, Joel S. Parker, PhD†,‡, Paul B. Googe, MD*,§, Klaus J. Busam, MD¶, Glynis A. Scott, MD||,**, Daniel C. Zedek, MD*,§, Eloise A. Parrish, MS†, Honglin Hao*, Nathaniel A. Slater, MD*, Michelle V. Pearlstein, MD*, Jill S. Frank, MS†,††, Pei Fen Kuan, PhD‡‡, David W. Ollila, MD†,††, and Kathleen Conway, PhD*,†,§§

- TERT (telomerase reverse transcriptase) maintains telomeres; mutations lead to uncontrolled replication and proliferation of cancer cells
- *TERT* promotor mutations identified in:
 - 67/87 (77.9%) melanomas
 - 1/72 (1.4%) nevi


Lower rates of TERT positivity in:

- Acral melanoma
- Non-white race
- Younger patients
- Non-sun damaged skin
- Lower extremity lesions

Am J Dermatopathol. 2019 April; 41(4): 264–272.

38 yo F, h/o MMIS 10 biopsies in past 13 months

PLA:

LINC: Detected

PRAME: Not Detected

Pathology:

EARLY EVOLVING MALIGNANT MELANOMA IN-SITU ARISING IN ASSOCIATION WITH A DYSPLASTIC COMPOUND NEVUS

Lesion on cheek, no change per patient

PLA:

LINC: Detected

PRAME: Not Detected

TERT promoter

mutation: Not Detected

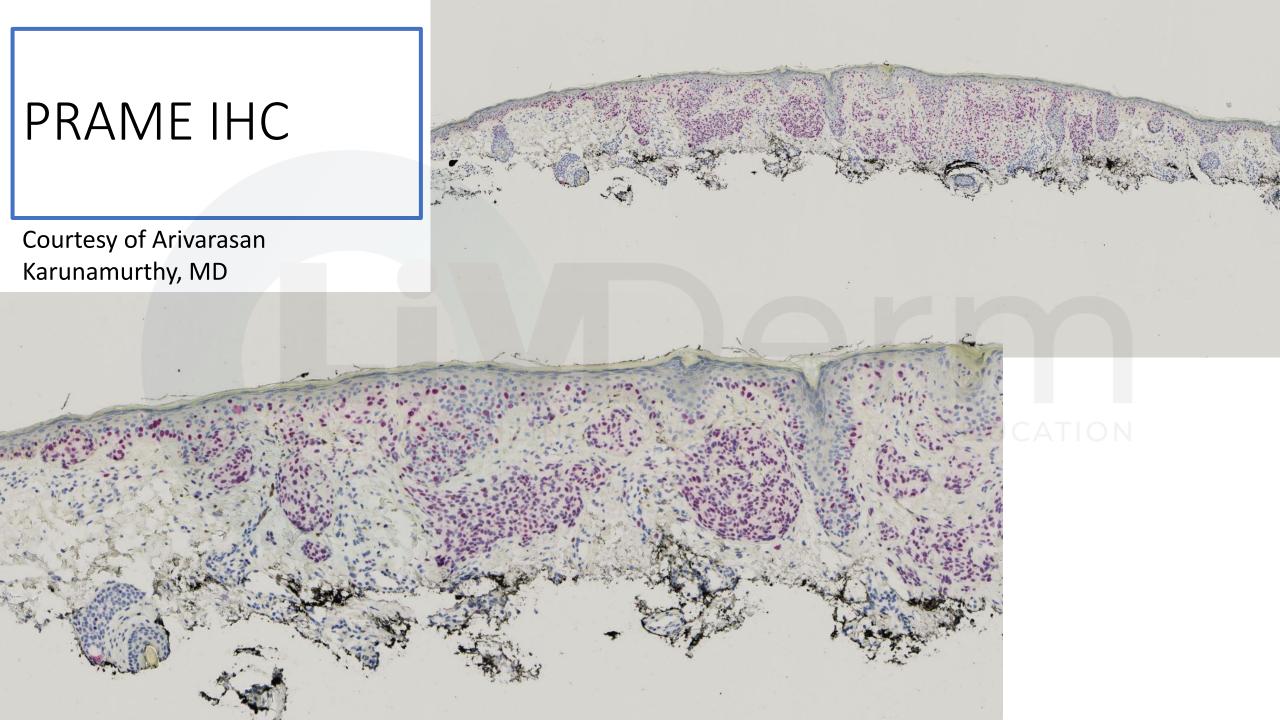
Pathology:

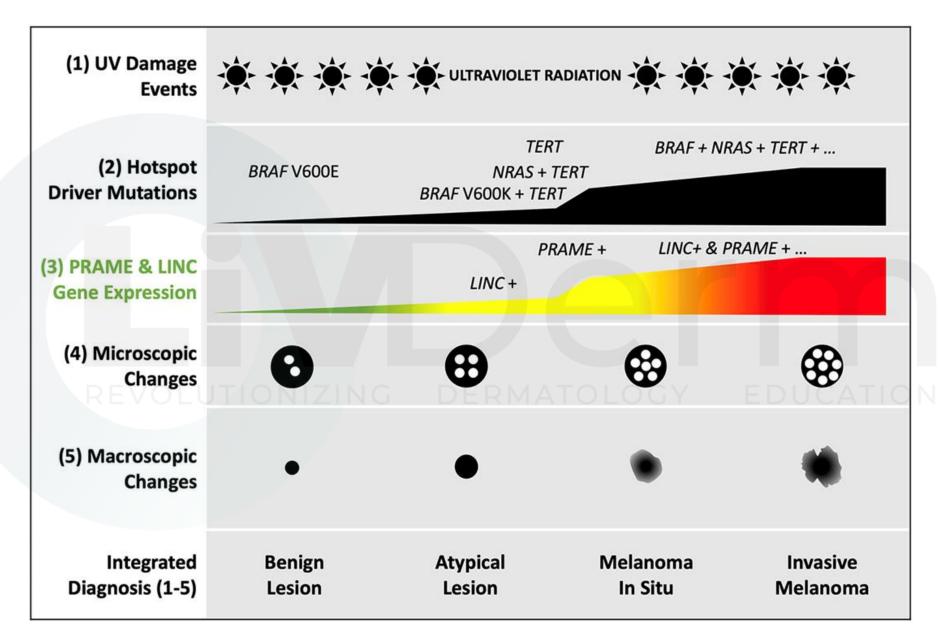
EARLY EVOLVING MALIGNANT MELANOMA
IN-SITU ARISING IN ASSOCIATION WITH A
DYSPLASTIC COMPOUND NEVUS

GENE EXPRESSION RISK STATUS: MODERATE (ORANGE) LINC00518: PRAME:

Not Detected Detected

MUTATION RISK STATUS: -


TERT Promoter: Not Detected

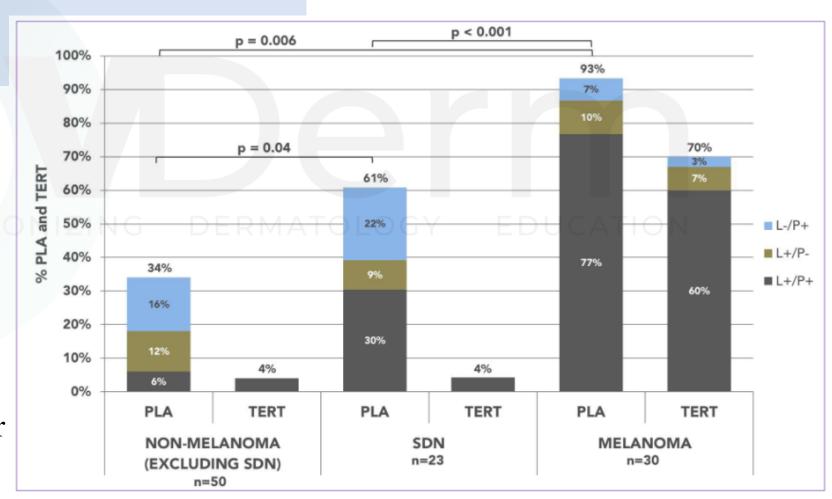

FINAL DIAGNOSIS:

SKIN, LEFT CHEEK, SHAVE:

- A. MALIGNANT MELANOMA, LENTIGO MALIGNA TYPE
- B. THE DEPTH OF INVASION (Breslow's thickness) IS 0.5 mm AT LEAST.
- C. SURFACE ULCER IS NOT IDENTIFIED.
- D. MITOTIC COUNT IS LESS THAN 1 PER 1mm2.

Dermatol Online J. 2019 May 15;25(5).

Risk Stratification of Severely Dysplastic Nevi by Non-Invasively Obtained Gene Expression


and Mutation Analyses (SKIN, March 2020)

Severely dysplastic nevi:

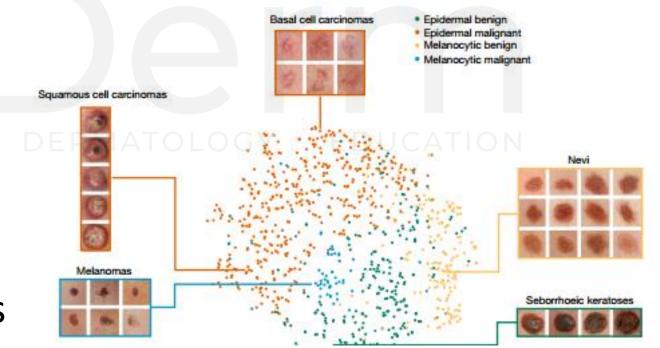
- Commonly express LINC and/or PRAME
- Rarely carry TERT promoter mutation

Melanoma

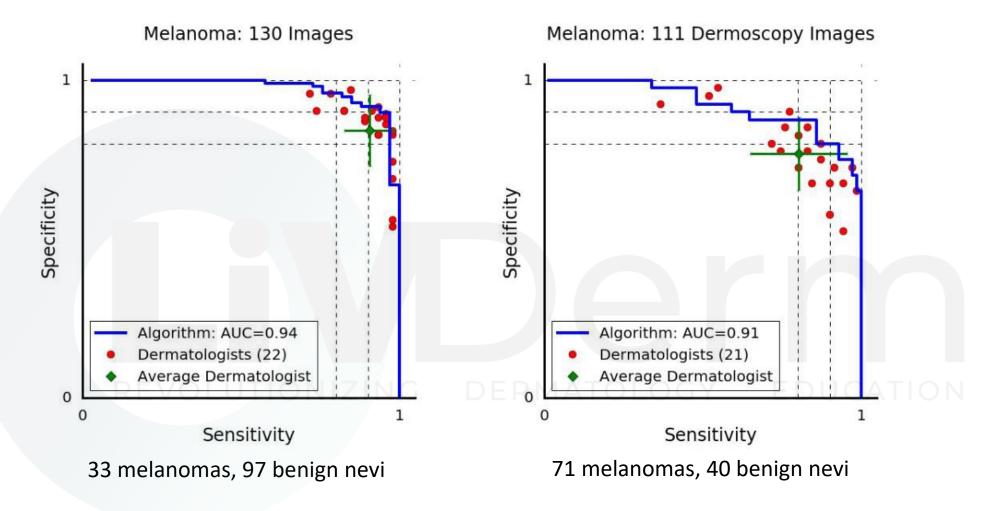
 Most express LINC and/or PRAME AND TERT promoter mutation

What about negative PLA lesions?

- 1781 PLA negative patients
 - Clinical follow up on 69%
 - 10 (0.8%) diagnosed in next ~ 1 yr with melanoma (in situ, stage I)

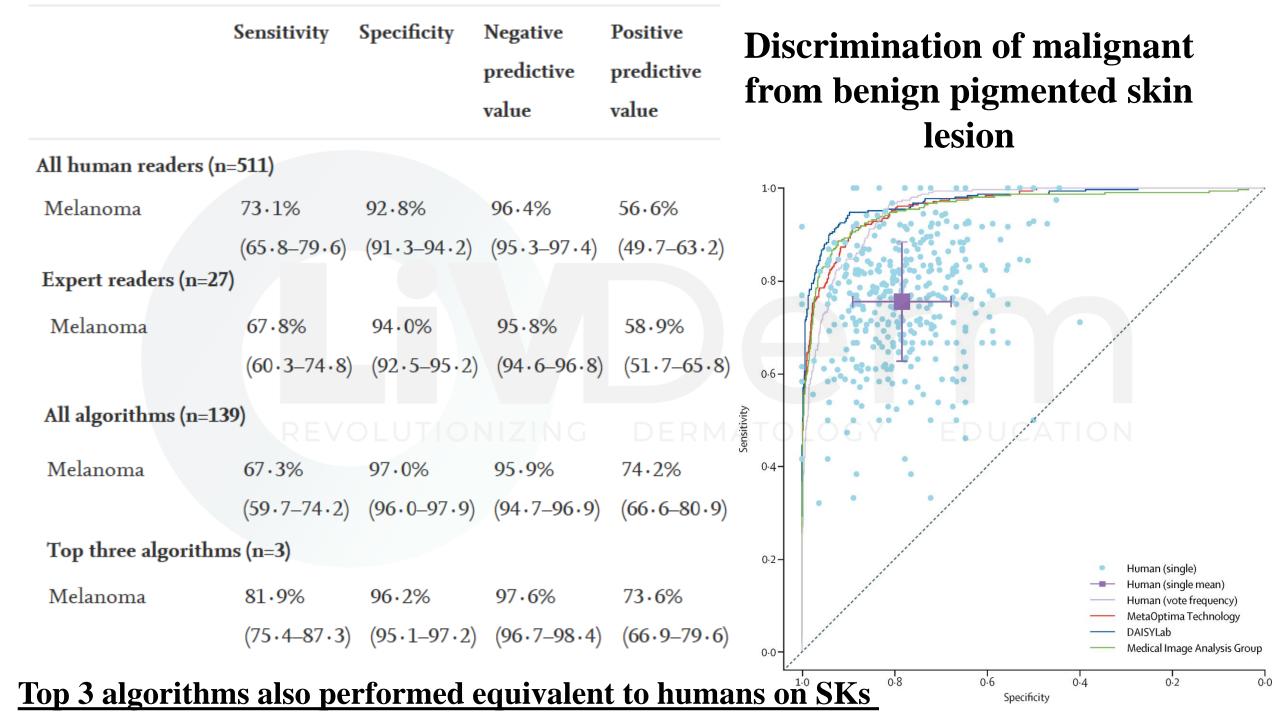

- 304 PLA negative patients, retested 6-12 mo later
 - 34 (11%) were PLA positive, all biopsied
 - 3 (1%) melanomas (all in situ)

Negative predictive value >99%

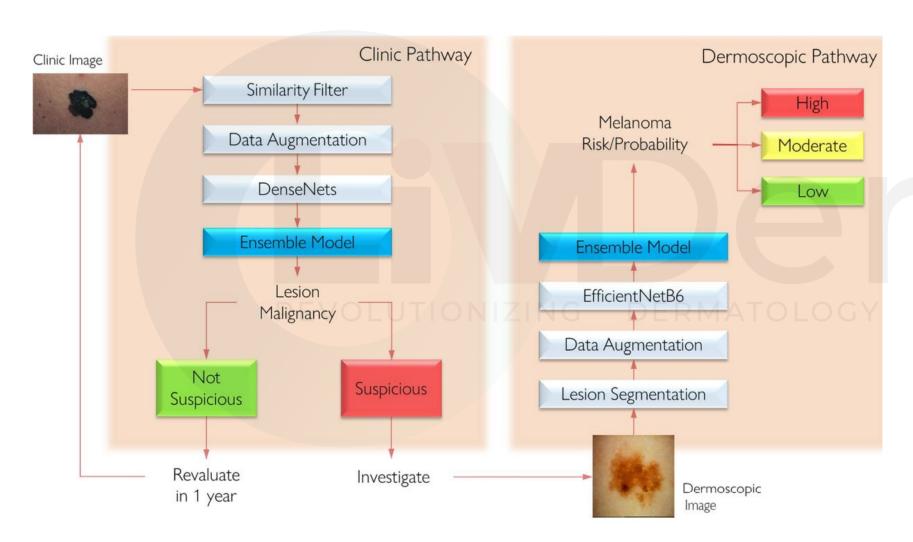

Dermatologist-level classification of skin cancer with deep neural networks

- Trained on >100,000 skin lesion images of >2,000 diseases
- Compared accuracy to dermatologists
 - Melanoma vs nevi
 - BCC / SCC vs SK
 - NOT SK vs melanoma!

Clinical or dermatoscopic images



Nature. 2017 Feb 2;542(7639):115-118.



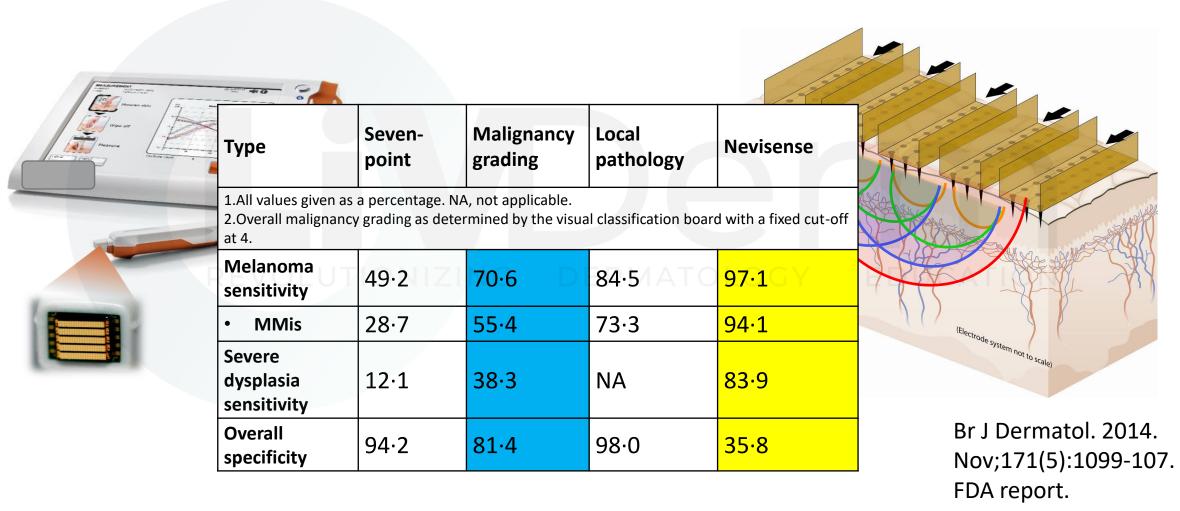
Red dot above the curve = Dermatologist outperformed computer Red dot below the curve = Computer outperformed the dermatologist No data on lesion thickness

Nature. 2017 Feb 2;542(7639):115-118.

AI for melanoma diagnosis in primary care- the future?

Trained using database of available and generated clinical and dermatoscopic images

• Sensitivity: 90%


Specificity: 85-89%

• PPV: 59-65%

NPV: 97%

CAD system pathways developed to provide outputs for clinical and dermoscopy images to primary care physicians.

Electrical Impedance Spectroscopy (EIS) FDA approved 2017 for use by dermatologists

NOTE: sensitivity 57.1% in patients <30 years of age (small n)


MELAFIND- What can we learn?

- Sensitivity comes at the cost of specificity
- Limited utility: Recommends biopsy of about 90% of lesions
- Extremely expensive optics/ machine
- Fixed classifier- cannot "learn" in real time \rightarrow need FDA reapproval
- Product no longer available / supported

	Sensitivity	Specificity
MelaFind	97%	9%
Readers	72%	51%

Monheit et al, Arch Dermatol. 2011 Feb;147(2):188-94. MelaFind Package insert

Human vs Machine – key differences in determining if a lesion is benign or malignant

Parameter	Human	Machine
Context	Consider all lesions on the skin, patient history, risk factors	Lesion in isolation; only the lesion the user chooses to evaluate
Objectivity	 Shaded by experience, fear of missing melanoma, incentive to biopsy or not Favor biopsy of benign over missing malignant 	 Objective Can choose to maximize sensitivity vs. specificity
Learning	Years: one patient / paper/ textbook at a time	Can train classifier in hours / days
Features evaluated	Uses set criteria to evaluate a lesionCan usually explain "why"	 Can identify and use new features and process large amounts and layers of data Cannot always explain "why"

Sensitivity and specificity are just one factor: must consider how tools designed to improve melanoma detection should best be integrated into clinical practice!