South Beach CELEBRATING YEARS Symposium OF PREMIER MEDICAL & AESTHETIC DERMATOLOGY EDUCATION

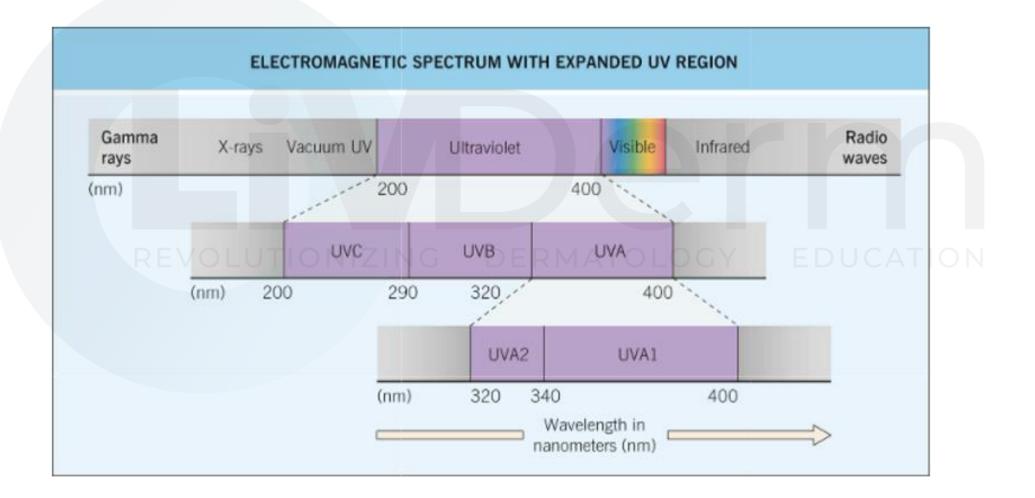
Spotlight on Sunscreens

REVOLUTIONIZING DERMATOLOGY EDUCATION

David Goldberg, MD, JD

Skin Laser and Surgery Specialists Schweiger Dermatology Group Icahn School of Medicine at Mt. Sinai

Outline

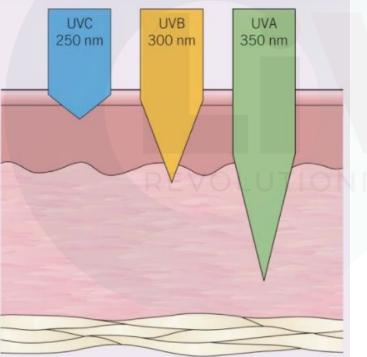

UV light and its effects

- The action spectrum
 - Sunburn
 - Tanning
 - Photoaging
 - Carcinogenesis
- UV effect at the molecular level
 - Chromophores
 - DNA damage

Sunscreens

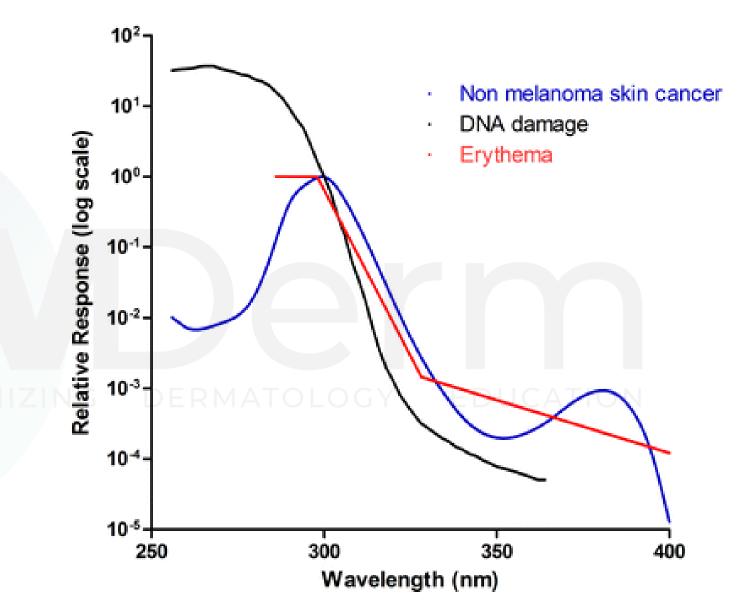
- History
- Regulation
- Properties
 - SPF
 - Substantivity
 - UVA protection
- Labeling in US
- Mechanism of action
- Categories
 - Organic sunscreens
 - Inorganic sunscreens
- Efficacy
- Safety

Spectrum of UV light



UV light

REVOLUTIONIZING DERMATOLOGY EDUCATION


UV light

UVC (200-290 nm)	UVB (290-315 nm)	UVA (315-400 nm)	
Almost all absorbed by earth's atmosphere	Most absorbed by earth's atmosphere	Composes 95% of what reaches earth	
Penetrates stratum AT corneum and superficial epidermis	Penetrates only ED superficial dermis	Penetrates to deep dermis	

The Action Spectrum

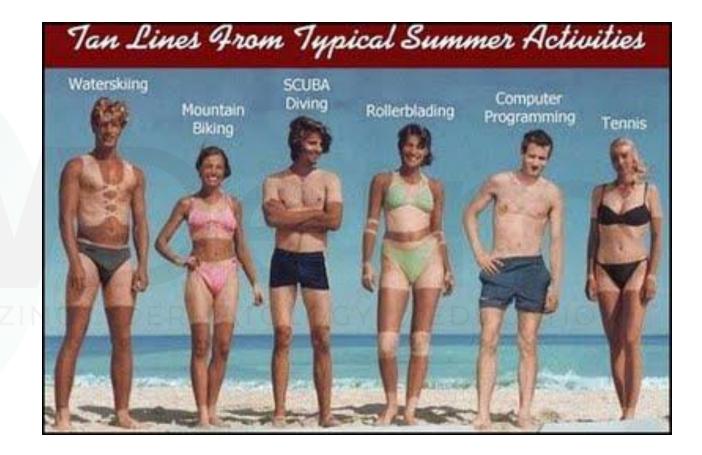
PLOT OF WAVELENGTH VERSUS RECIPROCAL OF THE DOSE REQUIRED FOR A GIVEN OUTCOME:

UVR induced disease

Effect	Spectrum of light		oflight	Type of evidence
	UVB	UVA	Visible	
Sunburn	++++	+		1
Photoaging	++++	++	?	3,4
Squamous cell carcinoma	++++	+		2,3,4
Basal cell carcinoma	+++	PERM	ATOLOG	2,4 EDUCATION
Cutaneous melanoma	++	+		3,4
Photoimmune suppression	++++	++		1,3,4
Photosensitivity	+	+++	+	1 (varies with disease)

Solar radiation summary

Radiation TypeD	Characteristic Wavelength	Effects on Human Skin	Visible to Human Eye?	Penetration in Human Skin
UVC	200-290 nm	DNA Damage	No	Superficial Epidermis
UVB	290-320 nm	Sunburn DNA Damage Skin Cancer	No	Superficial Dermis
UVA	320-400 nm	Tanning Skin Aging DNA Damage Skin Cancer	NO OLOGY ED	Deep Dermis
Visible	400-800	None Known	Yes	Stratum Corneum (polarized to superficial epidermis)
Infrared	800-120,000 nm	Heat Sensation	No	Deep Dermis


Sunburn

The ability to induce sunburn rapidly declines with increasing wavelengths

- UVB (290-315 nm)
 - Little if any immediate erythema reaction
 - Sunburn peaks 6-24 hours after exposure
- UVA (315-400 nm) TIONIZING DERMATOLOGY EDUCATION
 - Doses present in sunlight rarely enough to induce a sunburn
 - Immediate erythema reaction
 - Distinct delayed erythema reaction 6-24 hours later

Personal UVR sensitivity

- Correlates with Fitzpatrick Skin type
- Can be measured by minimal erythema dose (MED)
 - Amount of UVR needed to induce just perceptible erythema 24 hours after exposure
 - Used to calculate SPF (more on this later)

The Fitzpatrick Scale

Skin Type		Tanning Ability	Typical Features
I		Always Burns Never Tans	Pale white skin Red Hair with Freckles Blond Hair, light eyes
II		Burns Easily Tans minimally	Fair Haired Caucasians Northern Asians
III		Sometimes Burns Slowly tans to light brown	Darker Caucasians Some Asians
IV		Burns Minimally Always Tans to Moderate Brown	Mediterranean & Middle-Eastern Caucasians Southern Asians
V		Rarely Burns Tans Well	Some Hispanics Some African & African Descendants
VI		Never Burns Always Tans	Darker Africans Indigenous Australians

Tanning

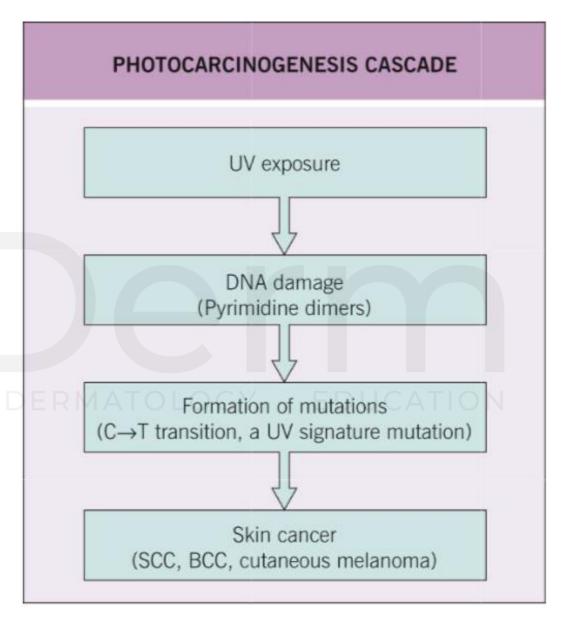
• UVA (315-400 nm) – "tanning bed tan"

- Immediate pigment darkening
- Oxidation and redistribution of existing melanin
- UVA-induced tan provides 5-10x less protection against sunburn from subsequent UV exposure

• UVB (290-315 nm)

- Delayed reaction: Tanning peaks 3 days after exposure
- Increased melanocytes, increased melanin synthesis, increased arborization of melanocytes, and transfer of melanosomes to keratinocytes

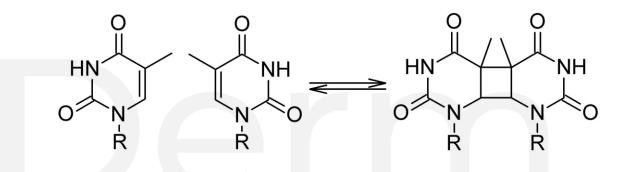
Photoaging


- UVA (315-400 nm)
 - Thought to play main role in **dermal** changes of photoaging
 - Less important in photocarcinogenesis

Only UVA penetrates through window glass

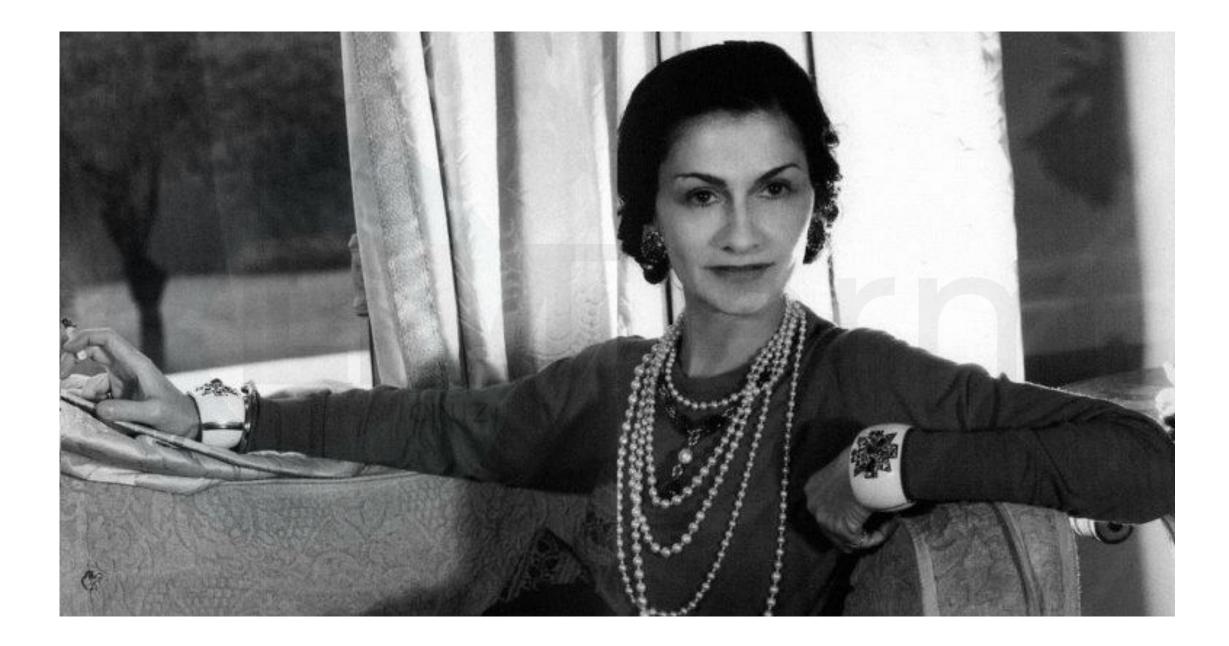
Photocarcinogenesis

- All else equal, UVB > UVA in inducing cutaneous malignancy
- However, UVA is
 - More abundant in natural sunlight
 - Penetrates glass and clothing
 - Penetrates more to basal layer



Chromophores

- Epidermal and dermal chromophores absorb UV light as energy, become unstable
 - Direct effect: structural change, binding to other molecules
 - Indirect effect: generation of ROS, damage to adjacent molecules like DNA or proteins
- Chromophores include:
 - Endogenous: DNA, melanins, urocanic acid, aromatic amino acids, flavins, and porphyrins
 - Exogenous: photosensitizing drugs (psoralen, fluoroquinolones, SUNSCREENS)


DNA damage

- Cyclobutane pyrimidine dimers (CPDs)
 - Caused by low (even suberythemal) doses of UVB
 - Lead to transition mutations: C→T, CC→TT, implicated in NMSC
 - ?Melanoma. UVR exposure a/w 65% of melanoma cases, 90% of NMSC
 - Leads to expression of MMP-1, which degrades collagen → photoaging

REVOLUTIONIZING DERMATOLOGY EDUCATION

- Pyrimidine (6-4) pyrimidones
 - 1/3rd frequency of CPD, but more mutagenic
- CPD and PPs removed by nucleotide excision repair, which is defective in XP
 - 10,000x risk of NMSC
 - 2000x risk of melanoma

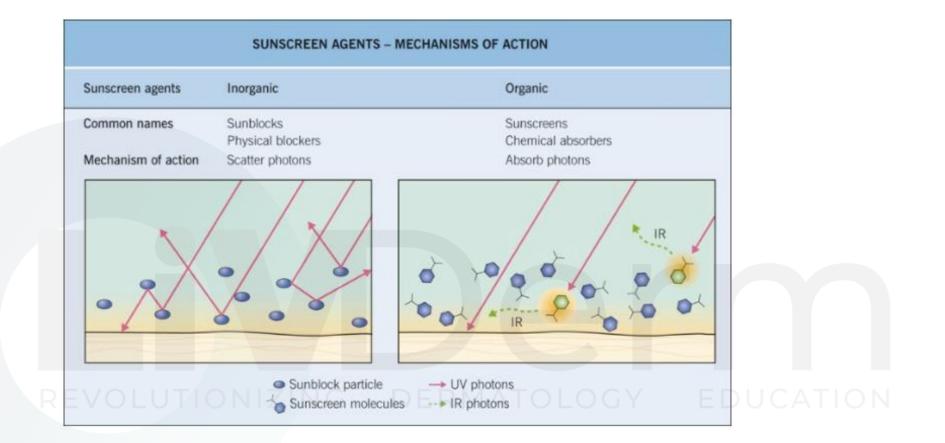
Sunscreen history

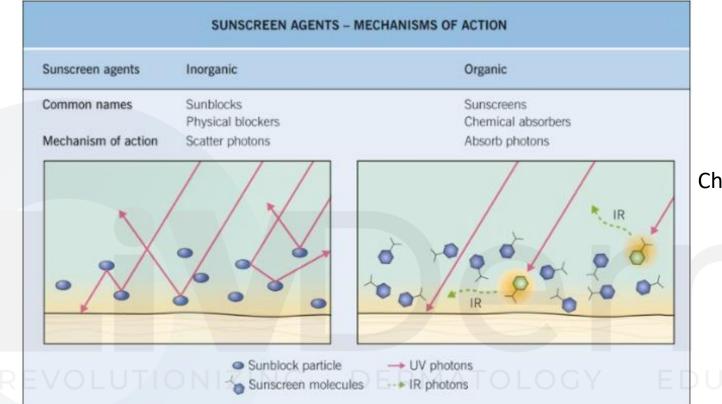
- 1928: First modern sunscreen introduced (benzyl salicylate and benzyl cinnamate)
- 1930s: Red petrolatum used as sunscreen in WWII
- 1943: Para-aminobenzoic acid (PABA) patented
- 1970s: Sunscreen use started to become mainstream

TAN...don't burn...use COPPERTONE

Get a faster, deeper tan plus GUARANTEED sunburn protection!

et a faster, smoother, deeper tan, with maximum sunbu rotection-than with any other leading product! That


Sunscreen Regulation


- In US, considered an over-the-counter drug, subject to FDA regulation
- In Canada, considered drug unless contain only titanium dioxide, zinc oxide, or PABA (then are "natural health products")
- Australia: "therapeutic goods"
- Areas in Europe, Asia, South America: "cosmetics"

Principle of sunscreen Effectiveness

- Protective layer of sunscreen effectively prevents sun from reaching the skin by one of two mechanisms
 - Absorption
 - Reflection

Sunscreen MOA

Chemical sunscreens **absorb** Based on chemical structure Radiation absorbed is converted to energy in form of heat

Physical sunscreens scatter Based on particle size Radiation reflected away from the skin

Sunscreen MOA

Organic "chemical" sunscreens

Category	Examples	Absorption spectrum	
PABA derivatives	 PABA (para- aminobenzoic acid) Padimate O (octyl dimethyl PABA) 	UVB only	 PABA stains clothing (rarely used now)
Cinnamates	 Octyl methoxycinnamate (octinoxate, Parsol MCX) Cinoxate 	UVB only	 Octyl methaxycinnamate is MC ingredient used in US Not as potent as PABA derivatives
Salicylates	OctisalateHomosalateTrolamine salicylate	UVB only	Weak absorbers, but stabilize other agents. Used in combination
Benzophenones	OxybenzoneSulisobenzoneDioxybenzone	UVB, UVA2 UVA2>UVA1 UVB>UVA2	Oxybenzone used MC

Examples	Absorption spectrum	
Octocrylene	UVB	Stabilizes photolabile agents
Ensulizole	UVB	Stabilizes photolabile agents
Enzacamene	UVB	
Ethylhexyl triazone	UVB	
Avobenzone	UVA2, UVA1	Photolabile
Menthyl anthranilate	UVA 2	Weak efficacy
Ecamsule	UVA 2, UVA1	
Drometrizole trisiloxane	UVB UVA2, UVA1	
Bisoctrizole	UVB UVA2, UVA1	
Bemotrizinol	UVA 2, UVA1	
Diethyamino hydroxybenzoyl hexyl benzoate	UVA 2, UVA1	
Bisdisulizole	UVA 2, UVA1	
Iscotrizinol	UVB, UVA2	

Inorganic "physical" sunscreens

Examples	Absorption spectrum	
Titanium dioxide	UVB, UVA2, UVA1, some visible light	Large particle size have broad spectrum protection Micronized formulations lose
Zinc oxide	UVB, UVA2, UVA1, some visible light	UVA1 and visible light protection

Newer Formulations

- Non-greasy
- Lightweight
- Not opaque

IT DERMATOLOGIST RECOMMENDED BRAND

Sheer Zinc

SUNSCREEN BROAD SPECTRUM SPF 50

50

NON-GREASY, LIGHTWEIGHT

FINISH

100% mineral active hypoallergenic water resistant (80 minutes)

3.0 FL OZ (88 mL)

Physical Blockers

- Other Physical Blockers:
 - Tinted sunscreens (pigment particles act as physical blockers)

G DERMATOLOGY EDUCATION

Chemical Blockers

- Formulations containing one or more of the following:
 - PABA, PABA Esters
 - Benzophenones
 - Cinnamates
 - Salicylates
 - Digalloyl trioleate
 - Anthranilates
- Mechanism: Absorb UV Radiation

PABA

- Very effective UVB chemical sunscreen
- Most effective at 5% in 70% Alcohol
- Maximum benefit when applied 60 minutes prior to exposure for stratum corneum binding
- Contact dermatitis
- May stain clothing

PABA Esters (Padimate a, o, Glyceryl Paba)

- Very effective UVB sunscreen
- Most effective in 2.5-8% concentration in 65% alcohol
- Penetrates less effectively than PABA
- Similar application and adverse effect
- Less likely to stain

Benzophenones (oxybenzone, dioxybenzone, sulisobenzone)

- Slightly less effective than PABA
- Effective in both UVA and UVB ranges
- Synergistic with PABA and PABA esters (enhances effect of either and is enhanced by combination with either)
- Can prevent photosensitivity reactions
- Rare contact dermatitis

Cinnamates, Salicylates

- Minimally effective
- UVB range
- Not generally used alone

REVOLUTIONIZING DERMATOLOGY EDUCATION

Anthranilates

- Minimally Effective
- UVA absorption
- Usually combined with UVB absorbers to broaden spectrum

Ideal Sunscreen Characteristics

Absorb/Reflect UVR in the 280-320 nm range

Water resistant

Stable to heat, light, perspiration

Odorless, mild odor usually acceptable

Non-toxic, non-irritant, non-sensitizing

Capable of maintaining sunscreen properties for several hours

Non-staining

EDUCATIO

Not rapidly absorbed

Rapidly soluble in appropriate vehicles

Sun Protection Factor

Requirements for testing of SPF

- 10 human subjects with skin type I or II
- Light source mimicking solar spectrum
- Determine MED in protected and unprotected skin

REVOLUTIONIZING DERMATOLOGY EDUCATION

Sun Protection Factor

- Ratio of doses of solarsimulated radiation causing erythema with sunscreen applied to that without sunscreen
- SPF = MED with sunscreen
 / MED without sunscreen
- SPF 15 allows 15 times as much time in the sun with the same resultant erythema as without the product in a given individual

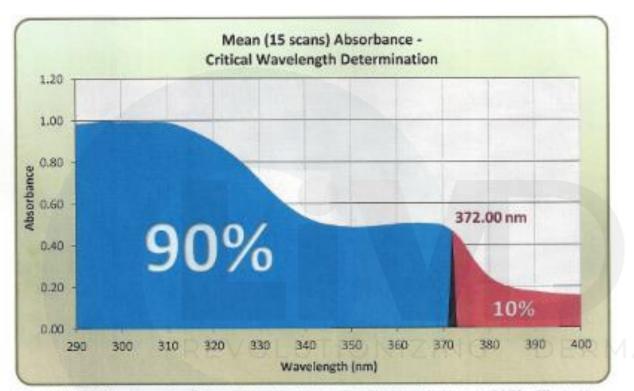
TIONSHIP OF THE SUN PROTECTION FACTOR (SPF) TO BLOCK ERYTHEMAL RADIATION

Blockage of erythemal radiation (%)

90
92.5
95
97.5

Substantivity

- To test "water resistance," subjects immersed in whirlpool bath after application and before MED testing
 - 40 minutes: 2 x 20 min immersions
 - 80 minutes: 4 x 20 min immersions



UVA protection

- Sunburn is a good indicator of UVB exposure
- UVA exposure does not have a similar endpoint that can be easily measured

REVOLUTIONIZING DERMAT

The Critical Wavelength of the above test material (AMA Lab No.: N-9078; Client No.: Sunscreen Lotion SPF 45 Lot # 44606 Sunscreen-Comp EM 001 Active: ZnO 9%, Octinoxate 7.5%) is 372.00 nm, and satisfies the criteria for "Broad Spectrum" labeling (minimum of 370 nm required).

UVA protection

- In vivo method: measures either immediate or delayed pigment darkening
- In vitro method: absorption spectrum of sunscreen is determined by a spectrophotometer
 - Critical wavelength: wavelength below which 90% of solar-simulated radiation is absorbed
 - Higher critical wavelength
 more UVA coverage

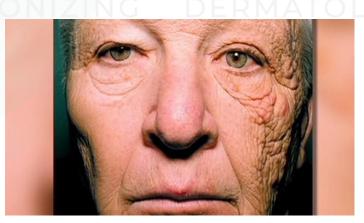
Labeling of sunscreens

FDA published "The Final Rule" on labeling in 2011

- Sun protection factor (SPF): up to 50+ (will consider higher ratings if data supportive)
- UVA protection
 - "Broad spectrum" only if critical wavelength above 370 nm (must do in vitro testing)
 - Otherwise this label is not included
- Substantivity
 - Water resistant (40 minutes) or water resistant (80 minutes)

Labeling of sunscreens

- SPF >= 15 **AND** broad spectrum:
 - "This product can help to reduce the risk of skin cancer and the risk of early skin aging, when used regularly and as directed in combination with other sun protection measures"
- SPF < 15 **OR** not broad spectrum
 - "Spending time in the sun increases your risk of skin cancer and early skin aging. This product has been shown only to help prevent sunburn, not skin cancer or early skin aging"


Sunscreen effectiveness - sunburn

- Pre-marketing studies show ability to prevent sunburn
 - 2 mg/cm² (for average adult: 2 tablespoons per application)
- In real world, not so much
 - Studies show sunscreens users apply on 25-75% of that
 - SPF reduced proportionally: SPF 20 has a practical SPF of 5 to 15
 - Reapplication?

Sunscreen effectiveness - photoaging

- In animal studies, prevents clinical and histologic changes of photoaging
 - May reduce damage that already occurred
- In human studies, reduction in dermal elastosis, prevention of biochemical measures of sun damage

Sunscreen effectiveness photocarcinogenesis

- The wavelengths of light most responsible for photocarcinogenesis is debated
- SCC and BCC are thought to be caused mostly by UVB, although UVA may play a role
- Melanoma very controversial. Most likely UVB
- Remember, 10-20x as much UVA as UVB in sunlight. Someone wearing UVB protective sunscreen may stay in sun longer, getting UVA radiation

Sunscreen effectiveness - photocarcinogenesis

- NMSC
 - AKs studied because earlier endpoint
 - Significantly fewer when wearing SPF 29 over 2 years
 - In Australian prospective study:
 - Active intervention group: Sunscreen supplied and use encouraged vs. background rate of sunscreen use in general population
 - Sunscreen group had less SCCs, no difference in BCCs _____ EDUCATION
 - Matches with clinical distribution of SCC vs. BCC

Sunscreen effectiveness - photocarcinogenesis

- Melanoma risk using nevi as marker
 - Sun exposure in children linked to more nevi AND higher risk melanoma
 - Retrospective studies: children using sunscreens have increased number of nevi
 - Prospective controlled study: sunscreens suppress development of nevi in children
- Melanoma LUTIONIZING DERMATOLOGY EDUCATION
 - Retrospective studies of melanoma patients: some show decreased risk with sunscreen usage, others show increased risk
 - Meta-analysis: sunscreen doesn't increase risk, but can't confirm that it prevents melanoam
 - Randomized trial of daily vs. disecretionary sunscreen use.

11 melanomas in daily, 22 in discretionary group (p=0.05)

Huncharek M, Kupelnick B: Use of topical sunscreens and the risk of malignant melanoma: a meta-analysis of 9067 patients from 11 case control studies. Am J Public Health. 93:11-12 2003

Sunscreen effectiveness – photoimmune suppression

- UVB > UVA
- Sunscreen protects against it, but not as well as it protects against sunburn
- Some investigators want to put "immune protection factor" (IPL) on the label

Sunscreen effectiveness – photosensitive disorders

UVA, VISIBLE LIGHT > UVB

AVOBENZONE AND ECAMSULE PRODUCTS MOST EFFECTIVE

Polymorphous light eruption (PMLE)

a architelillings:

Hydroa Vacciniforme

• UVA > UVB

REVOLUTIONIZI

Solar urticaria

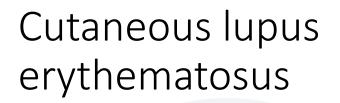
• UVA, Visible > UVBB

REVOLUTIONIZI

Chronic Actinic Dermatosis

• UVB > UVA > Visible

REVOLUTIONIZI


Photoallergic, Photoirritant, Phototoxic drug reactions

• UVA >> UVB, Visible

• UVB > UVA

Sunscreen effectiveness – photosensitive disorders

CLASSIFICATION AND ACTION SPECTRA OF PHOTOSENSITIVE SKIN DISEASES			
Disease	Spectrum of light		
	UVB	UVA	Visible
Polymorphic light eruption	+	++	
Hydroa vacciniforme	+	++	
Solar urticaria	+	++	++
Chronic actinic dermatitis ZING DER	V 1,4 TO	_⊕GY	+ EDUC
Actinic prurigo	++	++	
Photoallergic contact dermatitis		+++	
Photoirritant contact dermatitis		+++	
Photodrug reactions	+	+++	+
Porphyria			+++
Cutaneous lupus erythematosus	+++	++	

Sunscreen safety

- No human studies suggest carcinogenic or mutagenic
- Sunscreen ACD/ICD usually due to additive, not sunscreen itself
 - However, allergy to oxybenzone, padimate O, avobenzone described
- Lack of Vitamin D: confirmed in studies (though still in normal range)